Hướng dẫn: Trước hết ta tìm các
đạo hàm riêng: $z{{'}_{u}};\text{ }z{{'}_{v}};\text{
}u{{'}_{x}};\text{ }u{{'}_{y}};\text{ }v{{'}_{x}};\text{
}v{{'}_{y}}\text{ }$
$z{{'}_{u}}={{e}^{u}}\cos v;\text{
}z{{'}_{v}}=-{{e}^{u}}\sin v;\text{ }u{{'}_{x}}=1;\text{
}u{{'}_{y}}=2;\text{ }v{{'}_{x}}=y;\text{ }v{{'}_{y}}=x$
Sau đó ta thay vào công thức
\(\begin{cases}z{{'}_{x}}=z{{'}_{u}}.u{{'}_{x}}+z{{'}_{v}}.v{{'}_{x}}
\\z{{'}_{y}}=z{{'}_{u}}.u{{'}_{y}}+z{{'}_{v}}.v{{'}_{y}}
\\\end{cases}.\)
Ta có: \(\begin{cases}z_{x}^{'}={{e}^{u}}\cos
v.1-y{{e}^{u}}\sin v \\z_{y}^{'}={{e}^{u}}\cos
v.2-x{{e}^{u}}\sin v \\\end{cases} \Rightarrow
\begin{cases}z_{x}^{'}={{e}^{x+2y}}\cos
xy-y{{e}^{x+2y}}\sin xy \\z_{y}^{'}=2{{e}^{x+2y}}\cos
xy-x{{e}^{x+2y}}\sin xy \\\end{cases}. \)